[64
 ANGLE PAIRS

With your protractors, make the

 following angles:
1) 40°
 2) 130°
 3) 95°
 4) 25°

1. Define parallel lines.

Note: Lines are sometimes labeled and named with lowercase letters. The symbol || means "is parallel to."

Line r is not parallel to line s. Line p is not parallel to line q. Note: Lines p and q are not in the same plane. Such lines are called skew lines.

SKEW LINES
2. Define perpendicular lines.

Perpendicular lines

Note: The symbol \perp means "is perpendicular to."

Not perpendicular lines

Line r is not perpendicular to line s. Ray $B C$ is not perpendicular to line $A D$.
3. Define pair of complementary angles.
4. Define pair of supplementary angles.

Pairs of supplementary angles

$m \angle 1+m \angle 2=180^{\circ}$
$m \angle 3+m \angle 4=180^{\circ}$

Not pairs of supplementary angles

$m \angle 1+m \angle 2<180^{\circ}$
$m \angle 4+m \angle 5>180^{\circ}$

Pairs of complementary angles

$m \angle 1+m \angle 2=90^{\circ}$
$m \angle 3+m \angle 4=90^{\circ}$
Note: Sometimes it's convenient to name angles in a diagram with a number.

Not pairs of complementary angles

$m \angle 1+m \angle 2<90^{\circ}$
5.* Define pair of vertical angles.

$\angle 1$ and $\angle 2$ are a pair of vertical angles. $\angle 3$ and $\angle 4$ are also vertical angles.
$\angle A E D$ and $\angle B E C$ are also vertical angles.

Pairs of vertical angles

Not pairs of vertical angles

$\angle 1$ and $\angle 2, \angle 3$ and $\angle 4, \angle 5$ and $\angle 6, \angle 7$ and $\angle 8$, and $\angle 9$ and $\angle 10$ are not pairs of vertical angles.
6.* Define linear pair of angles.

$\angle 1$ and $\angle 2$ are a linear pair of angles.
$\angle 3$ and $\angle 4$ are a linear pair of angles. $\angle A E D$ and $\angle A E C$ are a linear pair of angles.

Not linear pairs of angles

$\angle 1$ and $\angle 2, \angle 3$ and $\angle 4, \angle 5$ and $\angle 6$, and $\angle A$ and $\angle B$ are not linear pairs of angles.

